Co-operative Multi-target Tracking and Classification
نویسندگان
چکیده
This paper describes a real-time system for multi-target tracking and classification in image sequences from a single stationary camera. Several targets can be tracked simultaneously in spite of splits and merges amongst the foreground objects and presence of clutter in the segmentation results. In results we show tracking of upto 17 targets simultaneously. The algorithm combines Kalman filter-based motion and shape tracking with an efficient pattern matching algorithm. The latter facilitates the use of a dynamic programming strategy to efficiently solve the data association problem in presence of multiple splits and merges. The system is fully automatic and requires no manual input of any kind for initialization of tracking. The initialization for tracking is done using attributed graphs. The algorithm gives stable and noise free track initialization. The image based tracking results are used as inputs to a Bayesian network based classifier to classify the targets into different categories. After classification a simple 3D model for each class is used along with camera calibration to obtain 3D tracking results for the targets. We present results on a large number of real world image sequences, and accurate 3D tracking results compared with the readings from the speedometer of the vehicle. The complete tracking system including segmentation of moving targets works at about 25Hz for 352×288 resolution color images on a 2.8 GHz pentium-4 desktop.
منابع مشابه
Decentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements
Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملApplications of Quantum Dots in Cell Tracking
Tracking cells after transplantation is always one the main concerns of researchers in the field of regenerative medicine. Finding a tracer with long stability and low cytotoxicity can be considered as a solution for this issue. Semiconductor nanocrystals, also called quantum dots (QDs), have unique photophysical properties which make them as suitable candidate in this setting. Broad-range exci...
متن کامل